
Generating Java Code
from Design Patterns
Ra y Grim m ond
Ch ristie W h itesid es
Threshold Computer Systems, Inc.
ray@thresholdobjects.com

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Introduction
Generating Java Code from Design
Patterns
General Interest in Code Generation
Tools are crucial in SUCCESSFUL
technologies
Design Pattern - Code Generation

Success crucial on use of Java and Java
Beans

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Agenda
Code Generation - Background
Problems with Design Patterns
How Java helps solves our problems
Putting it all together - Generating Java
Code from Design Patterns

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Early Experience - 1994/1995
Code generation using IBM SOM
emitter framework.

Generated code from CORBA IDL definitions
using specialized emitters.
Well defined finite set of types in CORBA -
produced templates based on CORBA types.
Generated PC-based C++ classes for View
classes, Memory model, Database access
schema and host message formats.
Successful re-generation of system in minutes
for IDL changes.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Emitters
Works well when perfected.

System re-generation is straight forward.
Conceptually simple

Coding is to the implementation of finite
IDL types and structures.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Emitters (Continued)

Disadvantages
Hard to code

Takes a long time to produce the template files
and the emitters.

Hard to maintain
Knowledge of SOM Parser and AST’s required.
Virtually unreadable by non-author.

Monolithic
Re-use of existing code is difficult by non-author.

Limited audience
Dependent on IBM’s SOM (System Object Model).

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Background
Patterns

Type-based emitter template programming
yields recurring "patterns" in code.

Frustration
Unable to formalize ,capture, or re-use
these "Patterns".

Design Patterns, 1995
Landmark OO-Book by Erich Gamma,
Richard Helm, Ralph Johnson, John
Vlissides. Rest is History.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Background (Continued)

IBM Systems Journal - Vol 35. No 2
1996
Automatic code generation from design
patterns

John Vlissides, Marilyn Finnie, Frank
Budinsky and Patsy Yu

Written before Java
Oriented towards Perl and HTML.
Home grown mapper and code generator

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Problems with Design Patterns
They are not code

They must be implemented each time they are
applied

Most patterns are in hard to read textbooks
Real-world pattern implementations different
from simple uncombined form found in most
text books.

Most examples are in either Smalltalk or C++
Code cannot be easily reused
Minimal or non-existent Visual composition
tools
Problems of authoring and dissemination

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Problems with Design Patterns
(Continued)

File System 101 example had
implementations of the following
patterns - Can you find them??

Composite
Proxy
Visitor
TemplateMethod
Singleton
Mediator

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Problems with Design Patterns
(Continued)

File System 101 Example in previous talk
Dense pattern implementation - 6 Patterns within
fairly small code example.
Pattern Paradox - example shows both the power
and problems with Design Patterns.

A misguided or inexperienced individual who misinterprets
the problem the pattern solves, or the context of when to
apply the pattern ,or is unable to recognize the patterns or
participants within the design, may initiate re-applications, or
re-combinations of the patterns, or introduce new patterns
that may break the integrity of the existing Patterns and the
solution.
On the other hand , with guidance and experience ,
re-application of old Patterns, or the introduction of new
Patterns may enhance the integrity of the existing Patterns
and the clarity and maintainability of the solution.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

The Problems Worsen
GofF patterns are only the tip of the
iceberg
Writers are writing "Descriptive"
Patterns

(Those never intended to have code generated
from them) Patterns exist for Training, for
Organizations, for Education, ... etc.

Pattern Languages - structured
collections of patterns that are
themselves patterns

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Languages
From a mathematical point of view, the
simplest kind of language system is a system
which contains 2 sets.

Set of elements, or symbols.
Set of rules for combining these symbols.

"Ordinary language and pattern languages are finite
combinatory systems which allow us ot create an infinite
variety of unique combinations, appropriate to different
circumstances, at will..."
Christopher Alexander, The Timeless Way of Building, pp.187

Natural language <=> Pattern language
Words <=> Patterns
Rules of grammar <=> Patterns which specify
connections
Sentences <=> Building ..

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns and OO Design
Doug Lea's article "Christopher Alexander:
Introduction for OO Designers" makes an insightful
connection between patterns and classes.

"Patterns extend the definition of OO Classes. Classes
are analogous to patterns in the following ways".
"External, problem-space view: Description of
properties , responsibilites, capabilities and supported
services as seen by software clients or the outside
world".
"The Internal, solution-space view: Static and dynamic
descriptions, constraints, and contracts among other
components, delegate, collaborators, and helpers, each
of which is known only with respect to a possibly
incomplete external view". (i.e., a class, but where the
actual member may conform to a stronger subclass)."

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Goal - Design Patterns to Java
Code

Given the infinite combinations of Patterns and
Pattern Languages, how can we even consider
generating Code from Design Patterns?
The following problems need to be solved

How to Discover and Recognize Design Patterns
How to Represent, Apply and Combine Design Patterns

The following conditions inhibit code
generation

Inadequate abstractions
Inadequate visualization Tools to examine , explore, and
experiment with these missing abstractions.
Lack of a generative solution.
(i.e. generative solution is one that should be self-generating -
similar to the Bootstrap process, use the tools and the output of
tools to build the tools.)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

"Simple" Model Solution
Don't worry about finding patterns
Invent new template language
Build some panels to make user
selections for implementation
trade-offs
Do some more symbol substitution and
editing
Cut and paste results into your favorite
application

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Bad Solution !!!
Solution is inadequate

Too time consuming
We will spend more time building tools than
applying patterns.

Building a one-off solution.
Need easily adaptable solution with design re-use
in mind.

Cannot use other peoples work.
Need to capture, communicate, and apply design
knowledge.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Tools Strategy
Need a Tools Strategy

Identify our requirements for the tools
Solve the following problems

Discovering and Recognizing Patterns.
Representing Patterns.
Applying and Combining Patterns.

Develop our strategy

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Requirements for Design
Pattern Tools

Design requirements
Rapid prototyping
Flexible and extensible
Easy specification
Symmetry

Ease of use
Utility
Seamless Integration - Plug-in, other
people can use or add to
Wide audience - Internet - (Java Applet)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

HELP!
Now what?

I have all this information, but no way to use
it. I have these lofty goals, some
requirements, and a strategy in mind. But
what can I do? All I can do is cut and paste
samples......
I feel that the representation of the patterns
are key to the solutionsuddenly...

A good idea !..
 Design Patterns as Java Beans

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

The Benefits of Beans
Java Beans Component Model

Discrete
Reusable
Visually configurable
Can interact with other beans
Can be combined to form complex applications

Works with builder tools
Persistent
Dynamic loading
Object Model
Reflection

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns as Beans
Can we extend the JavaBean model to
support a Pattern Bean?

Bean Definition:
"A reusable software component that can be manipulated
by a builder tool"

Application Builders:
None exist that recognize the Pattern Bean. "One can be
built"

Auxiliary Information:
Can be provided by extending BeanInfo class to
PatternBeanInfo
New Descriptor classes for Patterns can be added to the
BeanInfo

The answer to our question is "YES".

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns as Beans (Continued)

Pattern Bean - More details
Which pieces of a Pattern can be made into
Beans?

Patterns and Participants (i.e. their Class
representations) could be beans. Even the connections
between Patterns or within a Pattern could be expressed
as Beans.

Containers
Beans support the notion of containers - Beans within
Beans, that fits our model of Patterns within Patterns

Serialization
Specialized forms of serialization can be used to indicate
particular applications of a Pattern or a Participant.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns as Beans (Continued)

Pattern Bean - More details
Property Editors

Could be used to set pattern properties such as Gang of
Four's; Name, Intent, Motivation, Applicability, Also
Known As, Known Uses, Related Patterns...

Customizers
A better mechanism to view and customize the overall
pattern. Presents pages for simple properties listed
above, as well a implementation option selections, tree
view of participant classes and an imbedded source code
editor.

Editor Kits
Better than a standard source code editor. Specialized
with pattern intelligence built into Customizer as an
editing environment.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

We need to build the tools required to
solve each of the following five
problems with Design Patterns

Recognition
Representation
Application
Combination
Generation

From Design Patterns to Java
Code

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Discovering Patterns
Discovering Patterns in existing
applications

Detect and Identify Structure
Examine the Java Classes for overall structure ,
fields, methods, uses, constructor, inheritance,
implementations, etc.

Detect and Identify Participants
Check the Java classes, look for reponsibilities
and collaborations between classes.

Detect and Identify Patterns
Look for inter-related classes

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Discovering Patterns (Continued)

Examine relationships between
participants in the same Design Pattern

Detect and Identify
Relationships

inheritance
aggregation - containment, reference
uses - method parameter types

Polymorphic uses
protected methods and overriding methods

Interfaces/Abstract Classes

Remember relationships that are NOT
there are equally important.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Discovering Patterns (Continued)

Examine relationships between design
patterns

Large
Regions (architecture) <=> Frameworks

Medium
Buildings <=> Programs

Small
Bricks <=> idioms (2/3 lines of code)

Remember relationships that do not exist
are equally as important.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Recognition
Look for patterns in existing code
sources

Existing .java files
Examine .class classfiles
Use Java core reflection
Read the documentation and comments
for hints !

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Recognition (Continued)

Perform rule-based decomposition of
classes

Examine relationships between classes,
packages, and interfaces.
Examine relationships between classes, fields,
methods, constructors, and parameters.
Examine class and method modifiers, look for
use of protected, private, public and final
modifiers.
Further structural analysis, including
aggregation, scope, assignment, overriding
methods, etc.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Recognition - Tools
JFC Tree

Easy representation and visualization of a
classes ASTs (Abstract Syntax Trees).
Allows visualization of internal/external pattern
relationships.

Magelang ANTLR Tool
Magelang Institute provide a free full-source
Java Lexer and Java Parser generator. Allows
for the construction of ASTs.

Magelang X-Ref Tool
Able to examine relationships between Java
Classes; any number of classes in any number
of packages.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Recognition - Tools
(Continued)

Java Core Reflection
Another way of examining Java Classes and
their internal structure - limited however to
classes, fields, methods and their parameters.
(Security check problems with Applets and
some Browsers.)

Javap
Another approach is to use disassemblers
similar to the SUN javap.

Classfile analyzers
Java .class classfile format stable and well
documented.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Representation
How do we represent a Pattern in a Tool?

Relationships between Patterns are Patterns
themselves - Challenge is how do we represent this?

Here are just a few possibilites:

Create implementation based sample Java code.
Collect HTML based Pattern implementations.
Define a Pattern using a program and data
structures.
Plug-in Design Patterns CD's HTML.
Answer is to initially allow all these forms to represent
Patterns and their relationships. What forms are viable
or necessary for code generation will be discovered later.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Representation - Tools
HTML Plug-in.

Allow simple HTML pattern descriptions and
samples to be included as part of the pattern
representation.

GofF Design Patterns CD Plug-in.
Allow local or network use of Design Patterns
CD-ROM.

Pattern Bean Interface API.
Settable properties allow inclusion of other authors
patterns into the environment.

Internal Pattern representation.
Common intermediate pattern form used by all
tools.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Application
Information required to implement
design patterns

Choices for implementation trade-offs
and code generation options
Application specific names for the
following:

Participants
Classes
Methods
Fields
Variables

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Application - Tools
Bean Tools

Customiziers
Series of panels that allows user to customize a
particular pattern implementation.

Property Editors
Allows editing and setting of properties with
Pattern Bean.

Bean Serialization
Allows user changes to be serialized and saved.

Swing - Text Package
Specialized Editor Kits.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Application - Tools
(Continued)

Swing Text Package - Editor Kits
Specialized types of Pattern Editor Kits

Single Pattern Editor Kit.
Pattern Identifier Editor Kit.
Pattern Application Editor Kit.

Editor Kits allow multiple views.
Pattern View.
Participant View.
Document View.
classfile View.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Application - Tools
(Continued)

Template Editor Kit
Simple Macro replacement with optional
transformation
Conditional Inclusion
Repetitive Inclusion
Code Reuse - named segments
Macro Assignment

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Combination
Problems with Combining Multiple
Patterns

Easy to apply changes to 1 isolated pattern,
and generate the code.
Strategy needed to combine individual
Patterns into larger Patterns and Pattern
Languages
Need to resolve implementation conflicts
between individual patterns in regard to:

Merging of Structure
Merging of Program Logic
Merging of Names

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Combination - Tools
Visual Builders, BeanBoxes - Interim Solution

Current Paradigm - Components and Parts ,
need revised concept for Pattern Beans.
Links between Beans - connections between
beans rely on tying of Events, Properties, and
Methods together.
Links between Patterns are Patterns - concept
not well formalized or understood.
Current family of Visual Builders seen as interim
measure to gain familiarity with Pattern Tool
Concepts.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Combination - Tools
(Continued)

Long term solution
New generation of Visual Builders
Advanced Editor Kits
Graphical visualization Tools

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Combination - Tools
(Continued)

Swing Text - Document Interface
Document - Holds lot of potential for
Pattern Combination

Allows arbitary complex element structures to be
built within a single Document (uses Composite
pattern)
Multiple element structures could include
structures for classfiles, sourcefile, ASTs ,
databases, etc.
Multiple views are supported at the element level.
Different views (including graphical) can be
created for different elements and element
structures.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Code Generation -
Requirements

Convenient
Solution has to be usable and easily
understood.

Non-Invasive
The solution should be comprehensive and
complete. The user should not have to spend
ages tweaking the output.

Non-Irreversible
Incorporation of user changes after the code
has been generated, need to be preserved or
re-applied after one of the underlying patterns
have changed, or a new pattern has been added.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Code Generation - Solution
 Symmetrical

Leverage use and development of symmetrical
Tools, those that can recognize patterns and
create the Pattern intermediate form can also
generate code from the Pattern intermediate
form.

Solution
Key to the solution is the Pattern Intermediate
form

Work - in - Progress
Work is still underway when this presentation
was assembled.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Where Do We Go from Here?
What's Next ??

More on Pattern Languages
UML
Formal specification languages - 'Z' and VDM
Lambda Calculus
Pattern Folding
Tree Parsing
Ideas, Suggestions, and Feedback would be
appreciated

Suggested and NOT suggested reading
Questions ??

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

References
Threshold Computers Systems - Contact Web Site

www.thresholdobjects.com
Threshold Pattern Tools

www.qwan.com
Books

The Timeless Way of Building, Christopher Alexander,
OUP, ISBN 0195024028
A Pattern Language, Christopher Alexander, OUP, ISBN
0195019199
The Patterns Handbook, Linda Rising, SIGS, ISBN
0521648181
Design Patterns, Gamma, Helm, Johnson, Vlissides,
AW, ISBN 0201633612
Pattern Hatching, Vlissides, AW, ISBN 0201432935

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

